Multicellular Organisms Essay

Previous IB Exam Essay Questions: Unit 1

Use these model essay question responses to prepare for essay questions on your in class tests, as well as the IB Examination, Paper 2. These questions have appeared on recent IB examinations, exactly as shown below. Following each question is the markscheme answer which was used to evaluate student answers on the examination paper.
1. Discuss possible exceptions to cell theory.4 marks
  • skeletal muscle fibers are larger/have many nuclei/are not typical cells
  • fungal hyphae are (sometimes) not divided up into individual cells
  • unicellular organisms can be considered acellular
  • because they are larger than a typical cell/carry out all functions of life
  • some tissues/organs contain large amounts of extracellular material
  • e.g. vitreous humor of eye/ mineral deposits in bone/ xylem in trees/other example
  • statement of cell theory/all living things/most tissues are composed entirely of true cells

2. Eukaryotic cells have intracellular and extracellular components. State the functions of one named extracellular component.4 marks

name of component: 1 max

  • e.g. plant cell wall/cellulose/interstitial
  • matrix/basement membrane/glycoprotein/bone matrix;
functions: 3 max

EITHER

  • e.g. (plant cell wall) strengthens/supports the cell/plant (against gravity);
  • prevents the entry of pathogens;
  • maintains the shape of plant cells;
  • allows turgor pressure/high pressure to develop inside the cell;
  • prevents excessive entry of water to the cell;
OR
  • helps cells to stick together/adhere;
  • needed to hold cells/tissues together / example of cells/tissues holding together;
  • forms interstitial matrix / forms basement membrane to support single layers of cells;
  • e.g. around a blood capillary;
  • forms (part of the) filtration membrane in the glomerulus;

3. Explain how the surface are to volume ratio influences cell sizes.3 marks

  • small cells have larger ratio (than larger cells)/ratio decreases as size increases
  • surface area/membrane must be large enough to absorb nutrients/oxygen/substances needed
  • surface area/membrane must be large enough to excrete/pass out waste products
  • need for materials is determined by (cell) volume
  • cell size is limited (by SA/Volume ratio)/cells divide when they reach a certain size
  • reference to diffusion across/through membrane/surface area

4. Outline differentiation of cells in a multicellular organism.4 marks

  • differentiation is development in different/specific ways
  • cells carry out specialized functions/become specialized
  • example of a differentiated cell in a multicelluar organism
  • cells have all genes/could develop in any way
  • some genes are switched on/expressed but not others
  • position/hormones/cell-to-cell signals/chemicals determine how a cell develops
  • a group of differentiated cells is a tissue

5. Describe the importance of stem cells in differentiation.3 marks

  • stem cells are undifferentiated cells;
  • embryo cells are stem cells;
  • stem cells can differentiate in many/all ways / are pluripotent/totipotent;
  • differentiation involves expressing some genes but not others;
  • stem cells can be used to repair/replace tissues/heal wounds;

6. Draw a labelled diagram to show the ultrastructure of Escherichia coli.6 marks

Award 1 for each structure clearly drawn and correctly labelled.

  • cell wall – with some thickness;
  • plasma membrane – shown as single line or very thin;
  • cytoplasm;
  • pilus/pili – shown as single lines;
  • flagellum/flagella – shown as thicker and longer structures than pili and embedded in cell wall;
  • 70S ribosomes;
  • nucleoid / naked DNA;
  • approximate width 0.5 μm / approximate length 2.0 μm;
Award 4 max if the bacterium drawn does not have the shape of a bacillum (rounded-corner rectangle with length approximately twice its width).Award 4 max if any eukaryotic structures included.

7. Draw a labelled diagram to show the organelles which are found in the cytoplasm of plant cells.6 marks

Award 1 mark for each of the following structures accurately drawn and labelled

  • rough endoplasmic reticulum
  • free ribosomes
  • Golgi apparatus
  • mitochondrion
  • chloroplast
  • vacuole
  • nucleus
  • lysosome
  • smooth endoplasmic reticulum

8. State one function of each of the following organelles: lysosome, Golgi apparatus, rough endoplasmic reticulum, nucleus, mitochondrion.5 marks

  • lysosome: hydrolysis/digestion/break down of materials (macromolecules)
  • Golgi apparatus: synthesis/sorting/transporting/secretion of cell products
  • rough endoplasmic reticulum: site of synthesis of proteins (to be secreted)/ intracellular transport of polypeptides to Golgi apparatus
  • nucleus: controls cells activities/mitosis/replication of DNA/transcription of DNA (to RNA)/directs protein synthesis
  • mitochondrion: (aerobic) respiration/generates ATP

9. Draw a labelled diagram showing the ultra-structure of a liver cell.4 marks

Award 1 for each structure clearly drawn and correctly labelled. Whole cells not necessary.

  • (plasma) membrane – single line surrounding cytoplasm;
  • nucleus – with a double membrane and pore(s) shown;
  • mitochondria(ion) – with a double membrane, the inner one folded into internal
  • projections, shown no larger than half the nucleus;
  • rough endoplasmic reticulum – multi-folded membrane with dots/small circles on surface;
  • Golgi apparatus – shown as a series of enclosed sacs with evidence of vesicle formation;
  • ribosomes – dots/small circles in cytoplasm/ribosomes on rER;
  • lysosome;
Award 0 if plant cell is drawn. Award 2 max if any plant cell structure (e.g. cell wall) is present.

10. Distinguish between the structure of plant and animal cells.6 marks

Award 1 mark per differenceplant cells

  • have cell walls, animals do not
  • have plastids/ chloroplasts, animals do not
  • have a large central vacuole, animals do not
  • store starch, animal cells store glycogen
  • have plasmodesmata, animal cells do not

animal cells

  • have centrioles, plant cells do not
  • have cholesterol in the cell membrane, plant cells do not
  • plant cells are generally have a fixed shape/ more regular whereas animal cells are more rounded

11. Using a table, compare the structures of prokaryotic and eukaryotic cells.5 marks

P: prokaryotic cells; E: eukaryotic cells

  • DNA: P: naked/loop of DNA; E: associated with protein/histones/nucleosomes/DNA in chromosomes
  • location of DNA: P: in cytoplasm/nuceloid/no nucleus; E: within a nucleus/nuclear membrane
  • membrane bound organelles: P: none; E: present
  • ribosomes: P: 70S ; E: 80S
  • plasma membrane: P & E: same structure within both groups
  • cell wall: P: peptidoglycan/not cellulose/not chitin; E: cellusose/chitin/not peptidoglycan
  • respiratory structures: P: no mitochondria; E: mitochondria
  • pili: P: pili present E: pili absent;
  • plasmids: P: plasmids (sometimes) present E:plasmids absent;
  • flagella: P: flagella solid E: flagella flexible/membrane-bound;

The environments in which cells grow often change rapidly. For example, cells may consume all of a particular food source and must utilize others. To survive in a changing world, cells evolved mechanisms for adjusting their biochemistry in response to signals indicating environmental change. The adjustments can take many forms, including changes in the activities of preexisting enzyme molecules, changes in the rates of synthesis of new enzyme molecules, and changes in membrane-transport processes.

Initially, the detection of environmental signals occurred inside cells. Chemicals that could pass into cells, either by diffusion through the cell membrane or by the action of transport proteins, and could bind directly to proteins inside the cell and modulate their activities. An example is the use of the sugar arabinose by the bacterium Escherichia coli (Figure 2.19). E. coli cells are normally unable to use arabinose efficiently as a source of energy. However, if arabinose is their only source of carbon, E. coli cells synthesize enzymes that catalyze the conversion of this sugar into useful forms. This response is mediated by arabinose itself. If present in sufficient quantity outside the cell, arabinose can enter the cell through transport proteins. Once inside the cell, arabinose binds to a protein called AraC. This binding alters the structure of AraC so that it can now bind to specific sites in the bacterial DNA and increase RNA transcription from genes encoding enzymes that metabolize arabinose. The mechanisms of gene regulation will be considered in Chapter 31.

Figure 2.19

Responding to Environmental Conditions. In E. coli cells, the uptake of arabinose from the environment triggers the production of enzymes necessary for its utilization.

Subsequently, mechanisms appeared for detecting signals at the cell surface. Cells could thus respond to signaling molecules even if those molecules did not pass into the cell. Receptor proteins evolved that, embedded in the membrane, could bind chemicals present in the cellular environment. Binding produced changes in the protein structure that could be detected at the inside surface of the cell membrane. By this means, chemicals outside the cell could influence events inside the cell. Many of these signal-transduction pathways make use of substances such as cyclic adenosine monophosphate (cAMP) and calcium ion as “second messengers” that can diffuse throughout the cell, spreading the word of environmental change.

The second messengers may bind to specific sensor proteins inside the cell and trigger responses such as the activation of enzymes. Signal-transduction mechanisms will be considered in detail in Chapter 15 and in many other chapters throughout this book.

2.4.1. Filamentous Structures and Molecular Motors Enable Intracellular and Cellular Movement

The development of the ability to move was another important stage in the evolution of cells capable of adapting to a changing environment. Without this ability, nonphotosynthetic cells might have starved after consuming the nutrients available in their immediate vicinity.

Bacteria swim through the use of filamentous structures termed flagella that extend from their cell membranes (Figure 2.20). Each bacterial cell has several flagella, which, under appropriate conditions, form rotating bundles that efficiently propel the cell through the water. These flagella are long polymers consisting primarily of thousands of identical protein subunits. At the base of each flagellum are assemblies of proteins that act as motors to drive its rotation. The rotation of the flagellar motor is driven by the flow of protons from outside to inside the cell. Thus, energy stored in the form of a proton gradient is transduced into another form, rotatory motion.

Figure 2.20

Bacteria with Flagella. A bacterium (Proteus mirabilis) swims through the rotation of filamentous structures called flagella. [Fred E. Hossler/ Visuals Unlimited.]

Other mechanisms for motion, also depending on filamentous structures, evolved in other cells. The most important of these structures are microfilaments and microtubules. Microfilaments are polymers of the protein actin, and microtubules are polymers of two closely related proteins termed α- and β-tubulin. Unlike a bacterial flagellum, these filamentous structures are highly dynamic: they can rapidly increase or decrease in length through the addition or subtraction of component protein molecules. Microfilaments and microtubules also serve as tracks on which other proteins move, driven by the hydrolysis of ATP. Cells can change shape through the motion of molecular motor proteins along such filamentous structures that are changing in shape as a result of dynamic polymerization (Figure 2.21). Coordinated shape changes can be a means of moving a cell across a surface and are crucial to cell division. The motor proteins are also responsible for the transport of organelles and other structures within eukaryotic cells. Molecular motors will be considered in Chapter 34.

Figure 2.21

Alternative Movement. Cell mobility can be achieved by changes in cell shape.

2.4.2. Some Cells Can Interact to Form Colonies with Specialized Functions

Early organisms lived exclusively as single cells. Such organisms interacted with one another only indirectly by competing for resources in their environments. Certain of these organisms, however, developed the ability to form colonies comprising many interacting cells. In such groups, the environment of a cell is dominated by the presence of surrounding cells, which may be in direct contact with one another. These cells communicate with one another by a variety of signaling mechanisms and may respond to signals by altering enzyme activity or levels of gene expression. One result may be cell differentiation; differentiated cells are genetically identical but have different properties because their genes are expressed differently.

Several modern organisms are able to switch back and forth from existence as independent single cells to existence as multicellular colonies of differentiated cells. One of the most well characterized is the slime mold Dictyostelium. In favorable environments, this organism lives as individual cells; under conditions of starvation, however, the cells come together to form a cell aggregate. This aggregate, sometimes called a slug, can move as a unit to a potentially more favorable environment where it then forms a multicellular structure, termed a fruiting body, that rises substantially above the surface on which the cells are growing. Wind may carry cells released from the top of the fruiting body to sites where the food supply is more plentiful. On arriving in a well-stocked location, the cells grow, reproduce, and live as individual cells until the food supply is again exhausted (Figure 2.22).

Figure 2.22

Unicellular to Multicellular Transition in Dictyostelium. This scanning electron migrograph shows the transformation undergone by the slime mold Dictyostelium. Hundreds of thousands of single cells aggregate to form a migrating slug, seen in the lower (more...)

The transition from unicellular to multicellular growth is triggered by cell-cell communication and reveals much about signaling processes between and within cells. Under starvation conditions, Dictyostelium cells release the signal molecule cyclic AMP. This molecule signals surrounding cells by binding to a membrane-bound protein receptor on the cell surface. The binding of cAMP molecules to these receptors triggers several responses, including movement in the direction of higher cAMP concentration, as well as the generation and release of additional cAMP molecules (Figure 2.23).

Figure 2.23

Intracellular Signaling. Cyclic AMP, detected by cell-surface receptors, initiates the formation of aggregates in Dictyostelium.

The cells aggregate by following cAMP gradients. Once in contact, they exchange additional signals and then differentiate into distinct cell types, each of which expresses the set of genes appropriate for its eventual role in forming the fruiting body (Figure 2.24). The life cycles of organisms such as Dictyostelium foreshadow the evolution of organisms that are multicellular throughout their lifetimes. It is also interesting to note the cAMP signals starvation in many organisms, including human beings.

Figure 2.24

Cell Differentiation in Dictyostelium. The colors represent the distribution of cell types expressing similar sets of genes in the Dictyostelium fruiting body.

2.4.3. The Development of Multicellular Organisms Requires the Orchestrated Differentiation of Cells

The fossil record indicates that macroscopic, multicellular organisms appeared approximately 600 million years ago. Most of the organisms familiar to us consist of many cells. For example, an adult human being contains approximately 100,000,000,000,000 cells. The cells that make up different organs are distinct and, even within one organ, many different cell types are present. Nonetheless, the DNA sequence in each cell is identical. The differences between cell types are the result of differences in how these genes are expressed.

Each multicellular organism begins as a single cell. For this cell to develop into a complex organism, the embryonic cells must follow an intricate program of regulated gene expression, cell division, and cell movement. The developmental program relies substantially on the responses of cells to the environment created by neighboring cells. Cells in specific positions within the developing embryo divide to form particular tissues, such as muscle. Developmental pathways have been extensively studied in a number of organisms, including the nematode Caenorhabditis elegans (Figure 2.25), a 1-mm-long worm containing 959 cells. A detailed map describing the fate of each cell in C. elegans from the fertilized egg to the adult is shown in Figure 2.26. Interestingly, proper development requires not only cell division but also the death of specific cells at particular points in time through a process called programmed cell death or apoptosis.

Figure 2.25

The Nematode Caenorhabditis elegans. This organism serves as a useful model for development. [Sinclair Stammers Science Photo Library/Photo Researchers.]

Figure 2.26

Developmental Pathways of C. elegans. The nematode develops from a single cell, called a zygote, into a complex organism. The fate of each individual cell in C. elegans is known and can be followed by referring to the cell-lineage diagram. The labels (more...)

Investigations of genes and proteins that control development in a wide range of organisms have revealed a great many common features. Many of the molecules that control human development are evolutionarily related to those in relatively simple organisms such as C. elegans. Thus, solutions to the problem of controlling development in multicellular organisms arose early in evolution and have been adapted many times in the course of evolution, generating the great diversity of complex organisms.

2.4.4. The Unity of Biochemistry Allows Human Biology to Be Effectively Probed Through Studies of Other Organisms

All organisms on Earth have a common origin (Figure 2.27). How could complex organisms such as human beings have evolved from the simple organisms that existed at life's start? The path outlined in this chapter reveals that most of the fundamental processes of biochemistry were largely fixed early in the history of life. The complexity of organisms such as human beings is manifest, at a biochemical level, in the interactions between overlapping and competing pathways, which lead to the generation of intricately connected groups of specialized cells. The evolution of biochemical and physiological complexity is made possible by the effects of gene duplication followed by specialization. Paradoxically, the reliance on gene duplication also makes this complexity easier to comprehend. Consider, for example, the protein kinases—enzymes that transfer phosphoryl groups from ATP to specific amino acids in proteins. These enzymes play essential roles in many signal-transduction pathways and in the control of cell growth and differentiation. The human genome encodes approximately 500 proteins of this class; even a relatively simple, unicellular organism such as brewer's yeast has more than 100 protein kinases. Yet each of these enzymes is the evolutionary descendant of a common ancestral enzyme. Thus, we can learn much about the essential behavior of this large collection of proteins through studies of a single family member. After the essential behavior is understood, we can evaluate the specific adaptations that allow each family member to perform its particular biological functions.

Figure 2.27

A Possible Time Line for Biochemical Evolution. Key events are indicated.

Most central processes in biology have been characterized first in relatively simple organisms, often through a combination of genetic, physiological, and biochemical studies. Many of the processes controlling early embryonic development were elucidated by the results of studies of the fruit fly. The events controlling DNA replication and the cell cycle were first deciphered in yeast. Investigators can now test the functions of particular proteins in mammals by disrupting the genes that encode these proteins in mice and examining the effects. The investigations of organisms linked to us by common evolutionary pathways are powerful tools for exploring all of biology and for developing new understanding of normal human function and disease.

0 Replies to “Multicellular Organisms Essay”

Lascia un Commento

L'indirizzo email non verrà pubblicato. I campi obbligatori sono contrassegnati *